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CHAPTER 1: INTRODUCTION 
The current pavement design methodology, AASHTOWare PMED, does not account for scenarios 
involving truck platoons. Platoons are expected to have reduced spacing and wander (i.e., 
channelized) between trucks. Several studies quantified the impacts of truck platoons on pavement 
distresses and found that platooning accelerates the progression of distresses (Fagnant & Kockelman, 
2015; Gungor & Al-Qadi, 2020; Liang et al., 2016). Truck platoons may accelerate pavement damage 
or reduce pavement life because of channelized traffic, resulting in higher maintenance and 
rehabilitation costs (Gungor & Al-Qadi, 2022). The impact of lateral spacing of trucks was studied 
widely in the literature, and a consensus is that reducing wander results in higher distresses (Epps et 
al., 2002; Gungor & Al-Qadi, 2022; Noorvand et al., 2017). Similarly, the effect of rest period on 
fatigue was widely studied, and studies found that increasing rest period (i.e., truck spacing) reduces 
fatigue cracking (Daniel & Kim, 2001; Kim & Roque, 2006; Kim et al., 2001; Underwood & Zeiada, 
2014). However, the effect of rest period on rutting was studied, and lower rest period (i.e., truck 
spacing) results in lower permanent deformation (i.e., rutting) (Alrajhi et al., 2022; Motevalizadeh et 
al., 2018). However, the impact of truck platoons may vary significantly under realistic operating 
conditions with varying pavement structures, materials, and environmental factors.  

Permanent deformation experiments were used successfully to quantify the impact of rest period on 
rutting and provided input to the development of a mechanistic prediction model (Ramakrishnan et 
al., 2021). Permanent deformation experiments using a conventional repeated load are designed 
based on the most critical stress state, where a given pavement unit under the load is under pure 
vertical compression without any shear. However, an actual moving truck load impacts a fixed 
pavement unit differently while approaching, passing, or departing. For example, the stresses on a 
fixed point are in a triaxial state (vertical, horizontal, and shear) and vary with time as a truck moves 
over pavement, as presented in Figure 1. The shape and magnitude of moving load stress pulses vary, 
depending on pavement structure and temperature. Stress states resulting from varying stress paths 
due to moving loads within the asphalt and base layers impact deformation behavior and rutting 
performance of pavements. These stress paths include compression, shear, or extension stresses with 
varying magnitude and orientation of principal stresses depending on the position of loading and 
depth from the surface.  

Although confined or unconfined uniaxial compression stress states capture one of the loading cases 
within the asphalt concrete (AC) layer, these types of experiments may not represent the most critical 
stress states or neglect the effect of loading path history because of the passing of vehicles. This 
study explores alternative stress paths and compares them to conventional repeated load 
compression stress path tests. Using the alternative stress paths, the significance of stress path on 
determining the overall permanent deformation resistance of AC mixtures and criticality of various 
stress paths was explained. Additionally, the tests will verify the impact of rest period using a more 
representative simulation of moving truck loads in a platoon. Therefore, actual permanent 
deformation, developed because of moving trucks, may be understood qualitatively. 
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Figure 1. Illustration. Moving load stresses due to steering and first tandem axle of a class 9 truck. 

The effect of rest period on pavement damage was studied using an advanced, mechanistic finite 
element (FE) model and experimental data in the previous University Transportation Center funding 
cycle. The effect of lateral position and rest period will be combined as a single framework to 
incorporate in pavement design. Practically, 100% autonomous truck traffic is not possible in the near 
future. Hence, this study also aims to fill this gap by computing pavement damage as a function of 
various penetration levels, truck spacing, and wander. This step will be achieved using robust 3D FE 
pavement model simulations and an experimental program that simulates actual loading scenarios.  

OBJECTIVE AND SCOPE 
The main goal of the study is to understand the effect of truck platoons qualitatively and 
quantitatively on pavement distresses. Understanding the effect of stress paths’ (i.e., representative 
loading) impact on permanent deformation and platoon penetration levels will help design future 
pavements. The work presented in this report is an outcome of collaborative research conducted by 
the University of Illinois Urbana-Champaign and Arizona State University as part of the Center for 
Connected and Automated Transportation. The work is sponsored by the U.S. Department of 
Transportation’s University Transportation Center at the University of Michigan. This research project 
aims to understand qualitatively the impact of rest period using representative loads in experiments 
as well as to develop a framework to quantify the effect of truck platoons on pavement distresses as 
a function of rest period, wander, and penetration levels. 
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The research scope included repeated load deformation tests using custom-designed triaxial 
equipment and a framework to quantify the distresses. A laboratory-produced AC mixture prepared 
with modified and unmodified binder was used in the experimental program. Specific research 
objectives were as follows: 

• Quantify the impact of different stress paths representing triaxial compression, triaxial simple 
shear, and triaxial extension on permanent deformation.  

• Assess the impact of rest periods on each stress path. 

• Evaluate the comparative performance of modified and unmodified binder. 

• Quantify the pavement distresses caused by regular truck traffic and truck platoons at various 
penetration levels that incorporate both wander and rest period. 
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CHAPTER 2: IMPACT OF REALISTIC LOADING OF PERMANENT 
DEFORMATION BEHAVIOR ON ASPHALT CONCRETE 

BACKGROUND 
Several laboratory test methods were developed to characterize permanent deformation of AC 
mixtures and to predict rutting in asphalt layers (AASHTO T 378-17, 2017; Gibson et al., 2003; Uzan, 
2003; Witczak et al., 2002; Zhang et al., 2002; Zhou et al., 2004). As part of the National Cooperative 
Highway Research Project 9-19, the flow number and flow time tests were developed as a simple 
performance test using repeated axial load applications and a constant confinement pressure 
(AASHTO T 378-17, 2017; Witczak et al., 2002). A main assumption made with the use of the flow 
number test was that the critical state for permanent deformation was when axial compression was 
applied through the vertical axis of a cylindrical specimen. The tests were conducted at a typical axial 
stress state representing the structure and representative site temperature. The triaxial stress sweep 
test was developed more recently to account for the effect of temperature, loading time, and axial 
stress state (Choi & Kim, 2013; Kim & Kim, 2017). Both test methods consider the triaxial compression 
state applied through the vertical axis of a cylindrical specimen—in other words, the major principal 
axis. These test methods formed the basis of mechanistic rutting performances in their respective 
platforms (Choi & Kim, 2013; Kim & Kim, 2017; Witczak, 2007; Witczak et al., 2002).  

Advanced permanent deformation tests of AC mixtures were also developed with a goal to predict 
rutting in asphalt layers using numerical methods (Choi & Kim, 2013; Darabi et al., 2013; Subramanian 
et al., 2013). The stress states used in these tests are more complicated and designed to derive 
parameters of viscoelastic and viscoplastic constitutive relationships. Blocks of repeated axial 
deviatoric stresses with variable loading, unloading time, and stress magnitude were applied at a 
constant confining pressure representative of a stress state in AC layers. The outcome of the tests 
was used successfully for implementation of a viscoplastic constitutive relationship in a FE analysis 
program (Abu Al-Rub et al., 2012; Darabi et al., 2019; Rahmani et al., 2013; Shakiba et al., 2017). 
Similar to the simple performance tests, these advanced permanent deformations also assumed the 
triaxial compression state on a cylindrical specimen as the critical condition for AC layers and mixes. 

In contrast, the effect of stress paths other than triaxial compression was studied to evaluate the 
level of anisotropy on the resilient modulus and permanent deformation characteristics on granular 
(i.e., unbound) materials (Ashtiani, 2009; Kim & Tutumluer, 2005). Kim and Tutumluer (2005) and 
Ashtaini (2009) investigated the impact of changing stress paths owing to moving wheel loads on 
permanent deformation of granular materials. The stress paths studied included constant 
confinement pressure stress and variable dynamic confining pressure applied on both vertical and 
horizontal axes simultaneously. The studies demonstrated that the change of stress paths could 
produce higher permanent deformation in granular layers compared to traditional unconfined or 
confined repeated load triaxial compression tests. 

Rutting prediction models for AC layers are solely dependent upon confined or unconfined repeated 
load compression testing (Kim & Kim, 2017; Witczak & El-Basyouny, 2004; Witczak et al., 2002). 
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Despite some differences between the simple performance test and the stress sweep test (such as 
flow number), all existing permanent deformation experiments used for AC mixtures assume the 
triaxial compression state as the most critical state. However, AC layers are subjected constantly to 
varying stress states because of moving loads, which can drastically change a layer’s resistance to 
permanent deformation. At a given fixed point, the magnitude of horizontal and axial stresses varies 
with respect to depth from surface and load position. If the AC mixture also shows some degree of 
anisotropy, then the variable stress paths may result in substantially different permanent 
deformation characteristics than the triaxial compression stress path. Thus, there is a need to 
understand AC mixtures’ responses to permanent deformation using stress paths other than 
conventional triaxial compression repeated load tests. 

This research presents experimental results, demonstrating the impact of various stress paths on 
permanent deformation resistance of AC mixes prepared with modified and unmodified asphalt 
binder. The stress paths included are triaxial compression, triaxial simple shear and triaxial extension 
enabled by a custom-designed triaxial testing equipment capable of independently applying vertical 
deviatoric stress pulses, and horizontal static and dynamic confining stresses. Each stress path 
represented different loading positions at various depths from the surface. In addition, variable pulse 
configurations were designed to include variation in rest periods. The most critical stress path for 
permanent deformation was identified. The outcomes of this research can be implemented in the 
revision of rutting prediction models for design purposes or can contribute to plasticity-based 
constitutive relationships. In addition, with the introduction of truck platoons, a fundamental 
understanding of permanent deformation behavior is needed under variable stress paths with 
unloading or rest periods considered a variable. Previous work demonstrated the effect of rest period 
on AC permanent deformation under the unconfined compression state (Alrajhi et al., 2022; 
Ramakrishnan et al., 2021). As there may not be any field observations in the near future when truck 
platoons penetrate the freight industry, a realistic prediction of rutting in AC layers can be made for 
pavements that will be subjected to loading configurations from this new technology. 

STRESS STATE AND PATH DEFINITIONS 
Stress state is a fixed position and depth from the pavement surface because of moving loads or 
static loads. Stress states are often represented by the Mohr Circle approach, which is a graphical 
approach calculating stresses in different planes by reducing them to vertical and horizontal 
components (Holtz et al., 1981; Lambe & Whitman, 1991; Meyers & Chawla, 2008). As an alternative, 
the same stress states can be defined in the p-q plane. The mean stress component is represented by 
the p-axis, and the deviatoric stress component is represented by the q-axis. The graphical Mohr 
Circle approach was effectively used to visualize the relationships between shear and normal stresses 
on any plane. Equations presented in Figure 2, Figure 3, Figure 4, and Figure 5 can be used to capture 
a stress path at any given slope.   
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Figure 2. Equation. Calculation of the deviatoric stress. 

 

 
Figure 3. Equation. Calculation of the average of principal stresses. 

 

 
Figure 4. Equation. Calculation of the slope of a stress path. 

 

 
Figure 5. Equation. Calculation of the length of a stress path. 

where q = deviatoric stress, p = average of principal (normal) stresses (σ1, σ3), m = slope of stress 
path, L = length of stress path, Δq = change of deviatoric stresses from qs (major/minor principal 
stresses owing to overburden) to qmax (major/minor principal stresses owing to moving load stresses), 
Δp = change of average normal stresses from ps (major/minor principal stresses owing to overburden) 
to pmax (major/minor principal stresses owing to moving load stresses). 

Stress paths can be defined to represent varying states of stress as a function of time or changing 
position of loads. Stress path analysis is commonly applied for experimental characterization of 
plastic deformation for soils and foundations. Stress paths indicate the loading history of a point 
subjected to various magnitudes of major and minor principal stresses acting on planes with varying 
degree of rotation from cartesian coordinate systems. The most commonly used stress paths in the 
analysis of soils and granular materials include hydrostatic compression (Case A), conventional triaxial 
compression (Case B), simple shear (Case C), reduced triaxial compression (Case D), and conventional 
triaxial extension (Case E) (Ashtiani, 2009; Lambe & Whitman, 1991). These stress paths are 
developed by changing horizontal and confining pressure independently, as presented Figure 6. As it 
is convenient to define stress paths in the p-q plane, Figure 7 illustrates the abovementioned stress 
paths in the p-q plane.   
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A. Hydrostatic compression stress path 

 
B. Conventional triaxial compression stress path 

 
C. Simple shear stress path 



8 

 
D. Reduced triaxial compression stress path 

 
E. Conventional triaxial extension stress path 

Figure 6. Illustration. Summary of commonly used stress paths in the development of triaxial test 
for soils and granular materials. 

 
Figure 7. Plot. Stress paths in the p-q plane. 

Source: Holtz et al. (1981); Lambe & Whitman (1991) 
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EXPERIMENTAL PLAN AND MATERIALS 

Materials and Mix Design 
The aggregate source selected in this research was a granite type that was provided by a local 
producer in Phoenix, Arizona. A 1/2-in fine-graded mix was reproduced in the laboratory. Aggregate 
stockpile percentages are as follows: 18.5% of 3/4-in coarse aggregate, 17% of 3/8-in coarse 
aggregate, 18% of crusher fine, 30% of clean crusher fine, 15% of concrete sand, and 1.5% of type II 
cement. The testing specimens were produced using PG 70-10, PG 64-22, and PG 76-22 SBS binders. 
Two unmodified binders and one modified binder were selected to assess the impact of binder 
modification, recognizing the significance of life-cycle implications of binder selection on mixture 
performance (Praticò et al., 2011). Table 1 presents a summary of the volumetric properties of the 
mix design parameters, and Figure 8 presents the aggregate blend gradation in the mix.  

Table 1. Composite Aggregate Properties for the Fine-Graded Mix 

Volumetric Property Value Specification 
Asphalt Binder Type PG 70-10, PG 64-22, and PG 76-22 SBS N/A 
Target Asphalt Content (%) 5.7 N/A 
Bulk Specific Gravity (Gmb) 2.361 N/A 
Theoretical Max. Specific Gravity (Gmm) 2.455 N/A 
Percent Air Void 3.8 3.8–4.2 
Percent Voids in Mineral Aggregate 
(VMA) 15.5 14 min. 

Percent Voids Filled with Asphalt (VFA) 75.3 N/A 
Dust Ratio 1.0 0.6–1.4 

 

 
Figure 8. Graph. Aggregate gradation for a dense, fine-graded mix design. 
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Experimental Program  
The first phase of the experimental plan included conventional repeated-load permanent 
deformation tests with confining pressure at different temperatures. The capabilities of the custom-
designed triaxial testing equipment were verified and benchmarked with trends obtained in earlier 
work, and the impact of rest period on viscoelastic and viscoplastic deformation was explored (Alrajhi 
et al., 2022). In the second phase, three stress paths were designed, as presented in Figure 6. Stress 
path B is the commonly used conventional triaxial compression path with a slope of 3.0. The other 
stress paths included simple shear stress path C with an infinite slope and reduced triaxial 
compression stress path D with a slope of −1.5. The stress paths are illustrated in Figure 9 and Figure 
10. The stress matrix used in the experiments is introduced in Table 2, Table 3, and Table 4. The stress 
paths were applied on specimens prepared with PG 70-10 and PG 76-22 SBS at 130°F and prepared 
with PG 64-22 at 104°F. Axial deviatoric stresses were applied using a pulse configuration with 0.05-
second loading time and two rest periods (0.18 and 2.5 seconds). The two rest-period scenarios were 
considered to simulate spacing distances between trucks: 0.18 seconds corresponded to 16 ft—the 
shortest spacing between any two trucks of a platoon, whereas 2.5 seconds corresponded to 220 ft as 
a typical safe sight distance between trucks. Static confinement pressure was applied. 

 

 
Figure 9. Illustration. Schematic of stress paths used in the experiments. 

0

- q

p

B m= 3

Path B: Conventional Triaxial Compression Stress Path:
Δσh= 0 andΔσv increases
Path C: Simple Shear Stress Path:Δσh= -Δσv
Path D: Reduced Triaxial Compression Stress Path:Δσh
decreases andΔσv = 0
q = 𝜎1 − 𝜎3
p = (𝜎1 + 2𝜎3)/3
where

𝜎1 = greatest principal stress (axial stress),
𝜎3 = least principal stress (confinement or static stress),
𝜎1𝑑 = axial deviatoric stress,𝜎3𝑑 = horizontal deviatoric
stress, initial(𝑝𝑠 , 𝑞𝑠) = initial stress state, test 1= stress
state at point 1, test 2= stress state at point 2, test 3=
stress state at point 3.

q

qs
Ps

C m= ∞
D m= -1.5

qsPs

Initial stresses

Test 1

Test 2

Test 3

m= Δq/ ΔpΔP

Δq
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A. Stress path A 

 
B. Stress path B  

 
C. Stress path C 

Figure 10. Illustration. Stress path demonstration using a Mohr circle diagram. 
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Table 2. Stress States Used in the Triaxial Compression Path. 

Test # σ3 

(psi) 
σ1d 

(psi) 
σ3d 

(psi) 
σ1 

(psi) 
po  

(psi) 
qo  

(psi) 
pmax  

(psi) 
qmax  

(psi) m 

Initial1 10 0 0 10 10 0 – – – 

Test 1 10 81 0 91 – – 37 81 3 

Test 2 10 110 0 120 – – 46.7 110 3 

Test 3 10 139 0 149 – – 56.3 139 3 
 

Table 3. Stress States Used in the Simple Shear Path. 

Test # σ3 

(psi) 
σ1d 

(psi) 
σ3d 

(psi) 
σ1 

(psi) 
po  

(psi) 
qo  

(psi) 
pmax  

(psi) 
qmax  

(psi) m 

Initial1 35 76.9 0 112.4 61.2 76.9 – – – 

Test 1 25 107.3 0 132.7 – – 61.2 107.3 ∞ 

Test 2 15 137.8 0 153 – – 61.2 137.8 ∞ 

Test 3 5 168.2 0 173.3 – – 61.2 168.2 ∞ 
 

Table 4. Stress States Used in Reduced Triaxial Compression Path. 

Test # σ3 

(psi) 
σ1d 

(psi) 
σ3d 

(psi) 
σ1 

(psi) 
po  

(psi) 
qo  

(psi) 
pmax  

(psi) 
qmax  

(psi) m 

Initial1 35 137.8 0 173.3 67 137.8 – – – 

Test 1 25 148 0 173.3 – – 74.7 148 −1.5 

Test 2 15 158.1 0 173.3 – – 67.9 158.1 −1.5 

Test 3 5 168.2 0 173.3 – – 61.2 168.2 −1.5 
1 Initial testing stage to apply static axial and confinement stresses. 

Multi-axial Variable Pressure Triaxial Testing Equipment 
Custom-designed triaxial testing equipment was developed to conduct the experiments in this study 
(Figure 11). The triaxial testing equipment was designed to apply dynamic pulses in the axial and 
horizontal axes independently. Similar equipment designs were used in the characterization of 
granular materials (Ashtiani, 2009; Kim & Tutumluer, 2005). A universal testing machine with a 
5620.2 Ib hydraulic frame was upgraded with a 24-bit resolution controller and custom-designed 
triaxial testing system. The new triaxial testing system is capable of applying dynamic pulses in the 
axial and horizontal directions for 4 in × 6 in and 6 in × 8 in specimens. The system was designed to 
use water as the confining medium for dynamic pulses and air for static pulses. Maximum 
confinement pressure can be up to 87 psi. The triaxial system is operated in an environmental 
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chamber with a temperature range of −4ºF to 158ºF. The system is capable of combining a versatile 
range of vertical and horizontal pulse configurations to simulate the effects of moving loads. The 
controller provides flexibility to develop various pulse configurations that can represent the stress 
paths used in this study as well as more sophisticated ones such as moving load stress states or 
aircraft braking and turning. Figure 11 presents the triaxial testing equipment and specimen setup.  

 
A. Specimen setup 

 
B. Triaxial testing equipment 

Figure 11. Photo. Custom-designed triaxial testing equipment capable of applying multiaxial 
variable pulses. 
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Testing Protocol 
Samples with a 6-in diameter were compacted to a constant height of 7.0866 in with a Superpave 
gyratory compactor with a target air void of 7±0.5% following AASHTO T 312. The samples were then 
cored to 4 in, and the edges were sawed to obtain a final testing specimen of 6-in height in a similar 
procedure to that of AASHTO T 378. Prior to testing, the samples were conditioned in an 
environmental chamber to the desired testing temperature. First, static confinement and initial stress 
were applied (ps and qs), depending on the desired stress state to achieve the target stress path. 
Then, Linear Variable Differential Transformer (LVDTs) were reset, and repeated dynamic axial 
stresses and horizontal static stresses were applied on the sample simultaneously to achieve the 
desired stress state for every sample. Testing continued until 20,000 cycles or 0.4 in, whichever came 
first. 

RESULTS AND DISCUSSION 

Complex Modulus Characterization 
Figure 12 presents the complex modulus results for three binders (PG 64-22, PG 70-10, and PG 76-22 
SBS). The mix with PG 64-22 had the lowest modulus across the frequency and temperature spectra. 
The effect of polymer modification is observed at higher temperatures and lower frequencies. Phase 
angle and complex modulus is also present with black space and Cole-Cole plots. Phase angles over 
the temperature-frequency spectrum along with the black space and Cole-Cole plots did not reveal 
any significant differences to distinguish the three mixes. 

 
Figure 12. Plot. Complex modulus results. 
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Effect of Rest Period on Permanent Deformation 
The effect of rest period on permanent deformation without confinement was quantified in an earlier 
study using the repeated load deformation test without confinement (Alrajhi et al., 2022). Increasing 
the rest period from 0.18 to 2.5 seconds resulted in significant increases in permanent deformation in 
the range of 70% to 80%. The tests were repeated using the same mix and a similar rest-period range 
but with the addition of confinement pressure at 10 psi. Figure 13 presents the permanent 
deformation accumulated in the radial and axial directions for the mix with PG 76-22 SBS at three 
stress levels as well as short and long rest periods. The increase in permanent deformation with 
increasing rest period is evident in the results of both axial and radial directions. In addition, the 
impact of rest period is comparable to a change in the deviatoric stress levels of 29 psi.   

 
Figure 13. Plot. Effect of rest period with confinement for the PG 76-22 SBS mix at three stress 

levels and 130°F. 

Figure 14 illustrates a comparison of two mixes prepared with PG 76-22 SBS and PG 70-10. An earlier 
study demonstrated that the PG 76-22 SBS mix has better resistance to permanent deformation by 
almost three times at 104°F and 130°F (Alrajhi et al., 2022). The results are consistent in the present 
study with confinement. The comparison also consistently demonstrates that the mix with PG 76-22 
SBS tested with a rest period of 2.5 seconds has a comparable permanent deformation trend with the 
PG 70-10 mix tested with a rest period of 0.18 seconds.  
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A. Deviatoric stress level of 110 psi 

 
B. Deviatoric stress level of 139 psi 

Figure 14. Comparison of mixes with PG 76-22 SBS and PG 70-10 tested at 130°F and different 
deviatoric stress levels.  
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Stress Path Analysis  
The results from stress paths B, C, and D are discussed. The stress paths were defined as follows: 

• Stress path B is the conventional triaxial compression test.  

• Stress path C is the simple shear stress path.  

• Stress path D is the reduced triaxial compression.   

The number of cycles to reach 3.5% of permanent strains were extracted and presented in Figure 15. 
Stress path D (m = −1.5) required a much lower number of cycles to reach 3.5% strains than stress 
paths B (m = 3) and C (m =∞). Significantly higher permanent deformation is accumulated for path D 
compared to path B, which represents conventional repeated load permanent deformation tests. 
Stress path D is a more critical stress state in terms of permanent strain.  

The number of cycles were consistently higher with PG 76-22 SBS binder (almost two to three times 
higher than those with PG 70-10) at all combinations of stress paths and rest periods. The effect of 
rest period was also consistent for both binder and stress path. Increasing rest period resulted in 
almost two to three times higher permanent strain. An increase in rest period from 0.18 seconds to 
2.5 seconds had an equivalent impact of changing the binder from PG 76-22 SBS to PG 70-10 (i.e., PG 
70-10 at a 0.18-second rest period and PG 76-22 SBS at a 2.5-second rest period). 

 
A. PG 70-10 
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B. PG 76-22 SBS 

Figure 15. Effect of stress path for rest periods of 0.18 seconds and 2.5 seconds at 130°F for PG 70-
10 and PG 76-22 SBS. 

SUMMARY AND CONCLUSIONS 
The effect of stress path on permanent deformation characteristics of modified and unmodified AC 
mixtures was presented. The stress paths included conventional triaxial compression and reduced 
triaxial compression. Rest period was added to the stress paths as a variable. The mixes were tested 
using stress states constituting three different stress paths and two temperatures.  

Major findings and conclusions are as follows:  

• Increasing the rest period from 0.18 to 2.5 seconds at 104°F and 130°F for conventional 
triaxial tests with static confinement resulted in higher permanent deformation. The results 
presented in this paper are consistent with results from the previous study (Alrajhi et al., 
2022) where no confinement was applied. 

• Stress path D (reduced triaxial compression) was found to be the most critical stress state in 
terms of permanent strain. The number of cycles to reach a critical permanent strain dropped 
by almost half to one-third with stress path D compared to conventional triaxial stress path B. 
This is an important observation underscoring the need to account for the variable stress 
states that pavement layers can be subjected to because of moving loads.  
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• Increasing rest period consistently increased permanent deformation almost two to three 
times higher under the three stress paths. The significance of rest period as a testing variable 
along with stress state and temperature in repeated load permanent deformation tests is 
once again underlined.   

• The mix with PG 76-22 SBS binder demonstrated significantly higher resistance to permanent 
deformation than the mix with unmodified PG 70-10 at all stress path and rest period 
combinations.  
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CHAPTER 3: MECHANISTIC FRAMEWORK FOR COMPUTING 
PAVEMENT DISTRESSES 
Earlier work revised the mechanistic analysis of pavements to include the effects of wander and rest 
period individually as well as to predict pavement damage with truck platoon operation compared to 
conventional truck flow (Al-Qadi et al., 2021; Ramakrishnan et al., 2021). A holistic framework is 
required that incorporates the effect of both rest period and lateral position. This framework would 
also be useful in determining the optimal platooning strategy that reduces pavement damage while 
saving fuel consumption. Meanwhile, 100% autonomous truck traffic is not possible practically in the 
near future. Hence, this framework also aims to fill this gap by computing pavement damage as a 
function of various penetration levels of platoons. 

METHODOLOGY 
The methodology can be divided into three parts—namely, 3D FE pavement modeling, an 
experimental program with shifting curves for rest period, and the inclusion of rest period and 
wander into the mechanistic-empirical methodology. Each part is summarized in the following 
subsections. 

FE Pavement Model 
The current design procedure (AASHTOWare PMED) uses linear elastic analysis to obtain pavement 
responses with a simplified assumption for tire loading, layer interactions, material properties, and 
analysis (i.e., static). Al-Qadi and colleagues developed a 3D FE pavement model to overcome the 
shortcomings of the existing procedure (Al-Qadi & Yoo, 2007; Elseifi et al., 2006; Hernandez et al., 
2016; Yoo et al., 2006; Yoo & Al-Qadi, 2007). The developed model can be utilized to obtain 
pavement responses for any layer configuration, tire loading (i.e., tire type), axle configuration, and 
material properties.  

Experimental Data and Analysis 
An experimental program was developed to understand the rest period mechanism on AC permanent 
deformation. Alrajhi and Ozer (2022) performed repeated load permanent deformation tests for 
various AC binders, temperatures, loading levels, and rest periods. Permanent deformation was 
consistently observed to be higher for longer rest periods (Figure 16) irrespective of other parameters 
in the experimental matrix. A hypothesis, the hardening-relaxation phenomenon, was attributed to 
explain the behavior. 
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Figure 16. Plot. Effect of rest period on permanent deformation at 140 psi and 104°F. 

Source: Alrajhi et al. (2022) 

The experimental results of this study were used to quantify the effect of rest period. Using the 
experimental data, a shift model was developed by extending the principle of the time-temperature 
superposition framework. Shift factors can be computed using shift function coefficients. The main 
advantage of the shift model is to predict deformation for the new rest period without running 
additional tests (Figure 17).  

 
Figure 17. Plot. Shifted curve for experimental data. 

Source: Ramakrishnan et al. (2021) 
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Coefficients of shift functions were developed as a function of stress level and temperature. Using the 
shift factors, the effect of rest period can be incorporated easily into the PMED procedure by 
calculating the equivalent load repetitions. Equivalent load repetitions are a form of correction factor 
that account for the effect of rest period. A detailed procedure of obtaining shifting curves and the 
correction factor can be found in Ramakrishnan et al. (2021). 

Inclusion of Rest Period and Wander 
Wander, or the lateral positioning of trucks, was a key parameter in reducing the impact of truck 
loading, especially in truck platoons. However, the impact of platooning can vary significantly under 
realistic operating conditions with varying pavement structures, materials, and environmental 
factors. This study combined the effect of lateral position and rest period as a single framework to 
incorporate into pavement design. Okte and Al-Qadi (2022) proposed the “Expected Response 
Framework,” which includes the effect of wander and platoon penetration level into the distress 
calculation (Figure 18). The expected response framework was modified to incorporate the effect of 
rest period into pavement distress calculations. This framework was selected because of its technical 
accuracy and lower computational effort. The modified framework can predict distresses for various 
penetration levels, platoon sizes and spacing (i.e., rest period), different lateral distributions of 
platoons, and different positions of the platoon. 

 
Figure 18. Illustration. Overview of expected response framework.  

Source: Okte & Al-Qadi (2022) 

CASE STUDY SECTION 
The properties of the case study section were obtained using LTPP InfoPave. The closest and most 
representative section of the corridor was located on I-57 north of Rantoul, Illinois (LTPP Section ID: 
17-5849). Inputs such as temperature and annual average daily truck traffic (AADTT) were obtained 
from the database. Though the section is a composite pavement (PCC overlay), the section was 
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considered a flexible pavement system. The models used in the structural analysis calculations were 
verified from permanent deformation experiments conducted on materials representing typical 
mixes used in two regions. Therefore, the technical approach in this proposed work will aim to 
predict pavement damage specific to the selected routes and platoon scenarios. The detailed inputs 
and assumptions for the case study are as follows: 

• Layer Configuration—Thick (11-in AC) and thin (4-in AC) sections with material properties 
(Prony series) at different temperatures 

• Traffic—3,000 AADTT 

• Growth rate—1% 

• Loading—Standard class 9 truck at the maximum loading limits (i.e., 12 kips for steering axle 
and 34 kips each for two tandem axles) 

• Platoon size—3 

• Truck speed—70 mph (maximum speed limit at interstates) 

• Truck spacing—250 ft (non-platooning) and 60 and 18 ft (platoons). Equivalent to a rest 
period of 2.5, 0.57, and 0.18 seconds (time headway) in the experimental data.  

• Wander—Lane width is 12 ft and general truck width is 8 ft. Therefore, trucks can wander 2 ft 
on either side from the center of the lane. In general, human traffic follows a normal 
distribution with the center as the mean, with 10 in as standard deviation. However, platoons 
can be uniformly distributed into sublanes of 2-in width. Three sublanes apart from each 
other can be used to maximize the potential of lane position optimization (Figure 19) (Okte & 
Al-Qadi, 2022). The number of platoons distributed at each sublane is equal except for 
channelized traffic. For example, if the traffic is 300 platoons, then there are 100 platoons per 
sublane. 

 
Figure 19. Illustration. Sublanes for reducing pavement damage. 

RESULTS  
Pavement distresses such as rutting, fatigue, and international roughness index (IRI) progression were 
calculated by following the methodology. The results can be categorized into two main parts: the 
effect of penetration level and rest period.  
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Effect of Platoon Penetration Level 
Penetration level (PL) is the percentage of trucks under a platooning scheme. If PL is zero, then the 
traffic is purely human-driven vehicles, while 100% PL represents completely distributed autonomous 
vehicles. Channelized traffic represents the condition of fully autonomous traffic but travelling only 
on a single sublane ([−1,1]). Distresses were the highest for channelized traffic, followed by human 
traffic, 25%, 50%, 75%, and fully autonomous traffic (Figure 20). Note that Figure 20 represents a 
platooning scenario where the influence of truck spacing is neglected on the permanent deformation. 
As the penetration level increases, load application becomes distributed (on sublanes), resulting in 
lower distresses. Similar trends were observed in the study conducted by Okte and Al-Qadi (2022).  

 
A. Fatigue cracking 

 
B. Rutting 
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C. IRI 

Figure 20. Plots. Distresses at different penetration levels at a rest period of 2.5 seconds. 

Effect of Rest Period 
As the experimental data were used to incorporate the effect of rest period, rutting of the AC layer is 
expected to decrease with reduced truck spacing. Theoretically, fatigue cracking increases with 
reduced spacing. However, based on FE analysis, the tensile strain recovers fully after 0.1 seconds of 
load application (Al-Qadi et al., 2021). The impact of rest period on fatigue was insignificant when 
truck spacing is more than 10 ft. The effect of rest period on AC rutting, total rutting, and IRI is 
presented in Figure 21. Distresses are higher for the 2.5-second rest period, while the difference 
between 0.18-second and 0.57-second rest periods is insignificant. This observation can be attributed 
to the experimental results presented earlier (Figure 17). Permanent deformation for the 0.57-second 
and 0.18-second rest periods were closer and significantly lower compared to deformation at 2.5 
seconds. The results of the experimental data were reflected in the distress calculation.  



26 

 
A. AC rutting 

  
B. Total rutting 



27 

 
C. IRI 

Figure 21. Plots. Effect of rest period for channelized traffic. 

Combined Effect 
The effect of rest period and penetration level on pavement distresses is straightforward. However, 
the influence of penetration level will be significantly affected by rest period. In Figure 20, distresses 
were only presented for a 2.5-second rest period, which simulates the non-platooning scenario. 
Alternatively, a 2.5-second rest period implies that the effect of rest period is neglected on pavement 
distresses. In Figure 22, the IRI of channelized traffic is nearly the same as the purely human-driven 
scenario in contrast with channelized traffic at the 2.5-second rest period. This is mainly due to the 
reduced equivalent number of repetitions for rest periods compared to 2.5 seconds (non-platooning 
scenario).  

 
Figure 22. Effect of penetration level at a 0.18-second rest period. 
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Another important observation is that for the non-platooning scenario, advantages from platooning 
are not significant after 25% PL. In other words, the gains in the reduction of distress are minimal 
between fully autonomous traffic and mixed-traffic (25%, 50%, and 75%) conditions. In contrast, for a 
reduced rest period (0.57 and 0.18 seconds), significant improvements can be observed between fully 
autonomous and mixed-traffic conditions. At channelized conditions with lower truck spacing, the 
distresses would be nearly the same or equal to human-driven conditions.  

CONCLUSION 
Overall, this study highlights and quantifies the importance of truck spacing within a platoon and 
penetration level in the computation of pavement distresses. Truck platoons are mainly 
advantageous for the following reasons: 

• A reduced rest period plays a significant role in decreasing pavement distresses and enhances 
the effect of penetration level. Therefore, the previously presented framework can be utilized 
to compute pavement distresses efficiently. 

• In any case, platooning is advantageous even with lower penetration levels. The ideal scenario 
would be fully autonomous traffic distributed equally on sublanes. 

• Though truck spacing of 18 ft resulted in the lowest pavement distresses, the difference in the 
gains between 60 ft or 18 ft were minimal or insignificant. Hence, 60-ft truck spacing can be 
considered and would even be preferred over 18 ft because of safety concerns, which are 
ignored in this study. 
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CHAPTER 4: SUMMARY AND CONCLUSIONS 
The effects of truck platoons on pavement distresses were studied both qualitatively and 
quantitatively. Rest period is a critical parameter in truck platoon optimization for damage reduction. 
In a previous study, a reduction in rest period reduced permanent deformation (Ramakrishnan et al., 
2021). However, the experiments were limited to conventional triaxial compression and reduced 
triaxial compression tests. In this study, the experiments were extended to account for 
representative load pulses of truck platoons to analyze the effect of rest period on permanent 
deformation. In the experiments, rest period was considered a variable to the stress path. Wander, 
rest period (i.e., spacing, speed), and penetration levels are key parameters to quantify the effect of 
platoons on pavements. A framework was developed to compute pavement distresses as a function 
of all critical variables of truck platoons.  

Major findings and conclusions are as follows:  

• Conventional triaxial tests with static confinement resulted in higher permanent deformation 
for higher rest periods. The results are consistent with observations from the previous study 
(Alrajhi et al., 2022), where no confinement was applied. 

• Reduced triaxial compression was found to be a more critical stress state than conventional 
triaxial stress (path B). Permanent deformation increased consistently with rest period for all 
stress paths. This finding highlights the necessity to account for variable stress states because 
of moving loads and rest periods.  

• The framework can be used to obtain pavement distress for any rest period, wander, and 
penetration level. In accordance with the experiments, pavement distresses were lower for 
lower rest periods. Truck platoons distributed uniformly on sublanes would result in the 
lowest damage to pavement, even less than conventional trucking. 

• As the difference in distresses between 60 ft or 18 ft were insignificant, 60-ft spacing can be 
considered to alleviate safety concerns, which are ignored in this study. 

It is important to add that the initial static stress states used by each stress path were different. The 
impact of static stresses applied throughout the experiment was not captured in the test results. The 
impact of static and dynamic stresses should be recorded separately in future experiments to be able 
to compare stress paths more accurately. To fully capture stress states induced by moving loads, 
continuous dynamic pulse configurations applied on the vertical and horizontal directions 
independently will be required. 
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